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\ ABSTRACT
J
Two questions concerning bifurcation theory and optimal stochastic
control are considered, First, in a few examples, we give the interpretation
of a bifurcation in terms of optimal stochastic control. Next, we introduce
the analogue of the lowest eigenvalue for the nonlinear operator associated

i with the Hamilton-Jacobi-Bellman equations of Optimal Stochastic Control.
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SIGNIFICANCE AND EXPLANATION

We consider here two questions related to biturcation analysis in
nonlinear elliptic equations., We first study the interpretation in terms ot
optimal stochastic control of a bifurcation in some particular nonlinear
equation and we prove that, roughly speaking, it corresponds to the appearance
of critical sensitivity of the cost function (naturally associated to the
equation by classical Optimal Stochastic Control Thecry). The second question
1s related to the study of spectral properties of the nonlinear operator
arising in Optimal Stochastic Control: we prove that the nonlinearity
produces two constants, that we call demi-eigenvalues, which play the same
role as the first eigenvalue of a linear elliptic operator (namely existence
of constant sign eigenfunctions, uniqueness properties, bifurcation analysis,

etc.)u
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The responsibility for the wording and views expressed in this descriptive
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B1FURCATION AN UPVIMAL STOCRALSTIC CONTROUL
*
P. L. LIONS
Introductlion:

we conslder here two questlons concerning biturcation Theory and Uptimal Stochastic

Control.

The first one concerns the 1nterpretation in terms of Optimal Stochastic Control of a
bifurcation (1n semilinear secund-order elliptic eguations). Let us give a typical
example: let () pe a bounded, connected, smooth domain 1in RN. we consider nonnegative
solutions of
(1) du + AP = A an 0, ue Cz(v), u20 in 0, u=0 on 30
where A > 0, p > 1.

It 1s well-known (see for example P. H. Rabinowrtz [43), H. Berestycki [6]), P. L.
Lions (37)) that, if we denote hy X1 the first eigenvalue of ~A (with Dirichlet
boundary conditions), we have:

i) for 0 ¢ A K Al, the unique solution of (1) 1s u 2 0;

ii) for A > A there exist exactly two solulions of (1): O and uy where ux(x) >0

1
in 0.

In other words, at A = Xl, there is bifurcation of the curve (X,ux) from the traivial

branch ot solutions (A,0) (this is by the way an immediate consequence of the general

result concerning bifurcation trom a simple eigenvalue - see M. G. Crandall and P. H.

Rabinowitz [4]),

To give a stochastic interpretation of the solutions of (1), we introduce the

tollowing Optimal Stochastic Control problems:

T
(2) o = inf B X Ap-1)E(r,0)Pexp{rt - A [t pE(s,w)P laskar)
A £hex, 0 0
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T

p -1
(3) wltx) = anf Elf *Ap-n&(r,w)Pexplit - A [T pE(s,w)P Ndslde

A R 0

EeoeK,

where (&, F, Ft, P) denotes a probability space with a right-continuous filtration ot
complete sub-O-algebras of F - and E denotes the expectation -, where the state of
the system 1S given by the process x + Bt where Bt/fi is a Brownian motion with respect
to F,, where £(t,w) is the control required to be 1in Kge Ky which are detailed below

and where Tx is the first exit time of x + Bt from 6 {or (). Finally Ko (resp. K1)

is the set of bounded progressively measurable processes £ such that: 0 € § a.e. in

R, x 2 (resp. 0 ¢ 4§ <& a.e. 1n R x 2, for some & > O depending on £).
Remark: These optimal stochastic control problems are explained below in more details.
Let us point out for the moment that the quantity minimized in (2) or (3) is not

necessarily finite but takes its values in {0,+®]}, and that nevertheless u;, ui are

finite for every x € 0 and for every A > O.

Our main result on this simple example states that we have:

1 =2 2 = -
1) 1f 0«<¢ A < X‘, then uy Fuy 20
) | 2 . .
i1) If A > l1, then 2y <uy 2y oin 0.

0t course formally (1) is the Hamilton-Jacobi-Bellman equation associated with the control

problems (2) or (3) (see W, H. Fleming and R. Rishel [20)}, A. Bensoussan and J. L. Lions

[5), N V. Krylov [26] for a general presentation of Hamilton-Jacobi-Bellman, equations),

. 1 . ;
thus i1t is natural that “A' ui are solutions of (1). A more interesting phenomenon is

that, since KO is in some sense the closure of K1, when the bifurcation occurs, the
cost function (that is the quantity minimized in (2) or (3)) becomes highly sensitive on

the values of the control §(t,w).

The second question that we consider below is concerned with the existence of

analogues ot eigenvalues and eigenfunctions for the nonlinear operator of Hamilton-Jacobi-

Bellman equations namely:

Ay = sup (a9) , for ¢ € 20
121

~2-

e

A T T




_ 1 2 1 1 (*) .
A1 = _dkl(X) akl + bk(x) 3k + c (x) is a sequence of unitormly elliptic

wnere
operators with smooth coetticients. We denote by X‘(Al) the first elgenvalue of the

operator A, with Dirichlet boundary conditions (corresponding to a unique - up to a

multipllicative constant - positive eigentunction).

We 1ntroduce here two constants X‘, T‘ such that:

1) )‘1 < 1int X1(A ) € sup X](Al) < x1

121 121
1) It A < i], and it (fl(x))1>1 is a sequence of smooth functions then there exists
2™
a unigue solution u & W' () of:
(4) sup (Aiu - fi) = A ase. in O, u =0 on 30 .
121

1) If A ¢ X1, ana it (rl(x))i)1 is a sequence of nonnegative smooth tunctions then

. 2,%
there exists a4 unique nonnegative solution u & W' (0) ot (4).

iv) There exist ¢, ¥, € wz'm(O) satisfying:
(5) Ao, =sup (A g.) =X ¢ a.e.in (Q,9¢, <0 1n Q, ¢, =0 on 3
1 i1 171 “-11 —— 1 —_ 1 —
(6) AV, =sup (A.¥.) =X ¢ a.e.in 0, E >0 in O, ¥, =0 on 30 .
1 191 11 1" ——— 1 —_ 1 —_—

v) Let (¢,A) € wz'a(o) x R satisfy:

¢ = Ay a.e.1n O, v=0¢ on 30 .

If ¢ €0 then A = X1 and ¢ = 0w1 tor some 9 ® 0, and 1f ¢ ? 0 then A = X1 and

¥ = ewl tor some 8 > 0.

From this list of results, 1t 1s clear that Xl' il play the role ot eigenvalues and

we call them demi-eigenvalues (in particular because of some relation with a result of H.

bBerestyckl (7] concerning nonlinear Sturm-Liouville problems).

Let us also glve a simple example showing the relevance of X‘, T1 for bifurcation

problems: consider the equation

(7) Au + X]ulp-lu = Au a.e., in (Q, u € NZ’Q(O), us=s0 on 30 .

(*)
In everything that tollows, we use the implicit summation convention.
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We prove by a simple application ot the above results:

1) If A€ 51, the unigue solution ot (7) 1s u 2 ¢ ,

ii) It A1 <A< X], the only solutions of (7) with constant sign are u % 0 and Uy

where u

A 1S a negative solution of (7).

i11) 55_ A > X‘, there are exactly three solutions of (7) with a constant sign namely:

u £ o, vy the negative solution of (7) and E& the positive solution of (7).

Finally let us mention that Xl, X. have very natural stochastic interpretations (in

1

terms of Optimal Stochastic Control) and claims i) - v) above extend the results on the
solvability of Hamilton~-Jacobi-Bellman equations obtained by P. L. Lions (31), L, C, Evans
and P. L., Lions [17), but heavily rely on these works (for the obtention of a priori

estimates).

Acknowledgement: The author would like to thank A, Bensoussan for discussions on the first

question treated here.

I. Optimal stochastic control problems associated with bifurcations.

I.7. An example:

Let 0 be a bounded, connected, smooth domain in RN. Let us consider the following
equation:
(1) -Au + AP =22 in 0 ue Cz(ﬁﬁ, u»0 in 0, u=0 on 30 ,
where A > 0, p > 1. We recall that for A ¢ 11 (= A'(-A)) (1)} has a unique solution
u 2 0 and that for A > X1, (1) has exactly two solutions: u = 0. and ux which is the
unique positive solution of (1) (see for example H. Berestycki (6], H. Amann and T. Laetsch
(3], P. H, Rabinowitz (42]).

We now introduce the optimal stochastic control problems that are associated with (1).

This is based upon the remark that (1) is equivalent to

sup [-8u + Mpip'1 - 1u - Mp-11EP) =0 in 0
(1) vsg
w20 in 0, ueck@, u=0 on 30 ;

-4
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1ndeed remark that 1t u solves (1), then: 0 € u € 1 and (1') follows from tne ~rovexity
of (§ = |§lp). Next, 1f u solves (1'), then the supremum 1s obtalined at edcn porant X

of 0 tor £ = u(x) and this yields (1).
Let (&, F, Ft' P) be a probability space with a right-continuous filtration ot

complete sub-O-algebras Ft of F and with some adapted Brownian motion

~

Bt' we set Bt =72 Bc' The state of the system we want to control is given by x + Ht

(tor x = 0). Let £ be a bounded nonnegative progressively measurable process that we
will call the control, for such a control § we introduce the following cost function

J(x,§) € [0,+].

(8) J(x,8) = E[f:)x A(p-1EP (t,wiexp{+ At - Ap fg 27 (s,waslar
where T is the tirst exit time of x + B, from 0 (or 0).

Next, let KO be the set of bounded nonnegative progressively measurable processes
£ and let K, be the subset of Ky, consisting ot processes £ satisfying:

E(t,wy > § a.e. in R X Q

for some § > 0 depending eventually on 4.

Then we introduce for all x 6 (
(2) ul(x) = inf J(x,§) ,
EGKO
2
(3) uy(x) = inf J(x.8) .

£6K 1

Of course, u; >0 in O, u; =0 on d0{1 = 1,2) and in view of the heuristic dynamic

programming principle (see (20) for example) one would expect that u; solve (1) (i =1,2)

- provided these functions are at least finite. 1In fact, we prove:

Theorem I.1:

1) If 0¢< A< Al, then u;(x) = ui(x) = 0, for all x & (.

1

1T A =

i) If A > X], then u;(x) =0, ui(x) = u,(x) for all x & 0 (we recall that u

the uniyue positive solution otr (1).

.
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Remark l.l1: As 1t will be clear rrom the proot, in the detinition of ui we may replace

K, by

k., = {§ 6 K

[+3 .
) o Ya > 0,386 > 0 E(tArx(m),u) > 8§ a.e. in R x al

where r: 1s the first exit time of x + B from 0% = (x e 0, dist{x,30) > al.

We will give atter the proot ot Theorem l.1 a few remarks on the existence of optimal
Markovian controls tor (3) (0O 1s an optimal control tor (2)) and on the Cauchy problem
associated with (1),

1

Proot of Theorem l.1: Since J(x,0)}) = 0, 1t i1s clear that uA Z 0, ¥A > 0. Now, to prove

1) we need to prove that ui 20 1f A€ X1. We recall first the well-known stochastic

characterization ot X1 (see for more general results P. L. Lions (32}).

Lemma I.1: The first eigenvalue X1 is given by:

AT
A = sup(A > 0, sup Ele X) < w0y,

1
x60

Now, 1f we take the constant control §&(t,w) = € > 0, we have:

T
J(x,6) = Mp=116P £ [ ¥ explie (1 - peP™!))ar

and for € small enough, we find:

(p-1)€P

p-1 -
-1 Elexp(A(1 - pe )Tx) 1) . .

J({x,€) =

1-p€
Now, in view of Lemma I.1, 1f A ¢ X1 the expectation is bounded independently of € and
we conclude since:

0 < ui(x) € Jix,&) — 0 .

€+0
It A= A1, we remark that by Ito's formula we have:
J(x,e) = X(p-\)epva(x)
where a = ptp-1, and vu 18 the solution of:
25 0

(9) -AvG =1 4+ A](l - u)va in 0, ve€C ). vy=0 on W .,

But 1n view of the following Lemma, we conclude since we have




0 € uftx) € ax,e) ScePv o cce
L {0)

Lemma l.2: Let v‘x be the solution ot (Y); as a goes to U, then ava converyes 1n

2 = .
CTM to d.‘] where ¢, 1s the normalized eigentunction associated with X1:

-dv = A e i 0, w1sc2('5>. ¥, > U 1n 0,9, =0 on 30

1
and whare © 1s given by: 39 = T jo ¥ oAax .
1

Proot or lemma l.2: If we denote by W, = ava, we have

2 =
- = ) = CT (0 = .
Aw(x a + X1(1—a)wu i 0w >0 1n O, w €CT(), W =0 on 30
Multiplying this equation by ‘4 and integrating by parts over (, we find:
rof dx = s d A (1-a :
§ 20 Yty = /O Fdx o+ A (1-a) IO Yo X
or
[ - = .-
(10) X, iQ WoFqdx Jo.,1dx .
This proves 1in particular that Yo is bounded in LL’C(O) and more precilsely we have:
foway“]dx € C (indep. of a). We may now (for example) apply the method of H. Brezis and

R. E. L. Turner [10] to obtain

ﬁwul - € C (indep. of a)
L (D)

and by LP  and Schauder estimates this yields

tw C¢C (0<B<c 1) o
QCZ'B(O)

Now it w“ converges 1in Cz(a) to some Ww, obviously
-Aw:).]w in 0, w? 0 in 6,w=() on ao,wGCZ(a) ;

and trom {10) we deduce )‘1 fo w¢1dx = IO ¢‘Idx . Therefore w = 9«’1 and

1
8 = TT fo ¥, dx.

we next turn to the proof ot 11): we tirst prove that we have

uy(x} € ui(x) = inf J(x,§) .
561(1

- 7=




Ingeed let § € K be such that J(x,E) ¢ +® (x 18 tf1xed 1n (). beca. « ot "re

detinition ot K1, tnis implies:

d - (to el
fo L[1(Tx)t) expl{it - Ap ig S (s,wids}]dt < +=

Therefore there exists tn -;‘ +° such that:

t
n (p-! . s
E[1(tx>tn)exp{kt - Ap IO 13 (s,w)ds}) o .

€ -1 .
We now apply lto's formula to ux(x + Bt)exp{kt - Ap fO £p (s,w)ds} between 0O and
T A tn, and we obtain

x

TXAtn -1
n)exp{hx At - p )'0 ™' (s,wds))

ux(x) = E[ux(x + BTxAt

At
n

T
cEtf 0" o Cp-I(c,w)ux(x +B) - A WPix + 80

» explAt - Ap f; Ep—1(s,w)ds}dt] .

But: p Ep-1ux - ui < (p-l)Ep, and we deduce
TxAtn -1
U, (x) € J(x,6) + Eluy(x + B, dexp(Ar At - dp [ P (s, wias)) .
n

But the second term may be bounded by

fu, 1 E(

t
N expOe_ = Ap [ " £P7N(s,w)as))
L™

1
(T »t )
X n
and this goes to 0 as n goes to %,
Now, for & small enough, there exlsts u: solution of
(] ap a a a . a a a
A = =
-8uy + Auy) XuX in 07, vy, >0 in 0, uy =0 on 30
. . a
(indeed the first eigenvalue of -4 in 0 converges to X1 as a goes to O0). 1In
addition it is easy to show that, extending u: to 0 by O, we have:
ua — u in @) .
A a*0 A
tut the above proof shows that
a . [+ a
uy (x) <inf J(x,§) , w €0

I
EK‘

-




a2
1

wlere Ju(x,i) = L[;”,K X(p-—l)f.i](t,w)rn:‘,.t/\[ - Ay

v o
ot »
>

(s,wj18hin ). oW Lt 4 e v

o~ g3 |
Lt N T {w),w) e K‘ and we aeaduce tron e dabove lpedealrty:
<

Q

T
B . -1 .
ui(x) < E[fux X(p-\)&‘(t,u)expikt - AL ek wasiar

P
S J{x,.§) €

ror all x & 60, on the other hand 1t x ¢ '6“, this 1neqguality 1is trivially true. Lhus,

taking @ * U, we obtarn:

() ux(x) Cint  J(x,§) .
EGKZ

wWe now prove thnat:

(12) u, (x} = J(x,8 ) = 1nf J(x,8)
X N
Eex’

where Ex(t,w) = u\(x + BtM Ye
x

We first vemark that X (-A - A + Xpup—1

A ) > 0. Indeed from the equation (1), we

aequce:

p-t. _
X’(--A—)\+Xux )} =0

and this yields the above 1nequality in view of well-known comparison principles for
elgenvalues. But this implies (by an extension of Lemma I.1 which can be founc for example

in (327)
8AT

(13) sup — Elexp(GBArX + XeAtx - Ap IO P

-1
A (x + Bs)ds)] < w

x60
8 stopping time

tor some § > O,
Thus, applying Ito’s tormula to ux(x + Bt)exp(kc - Ap fg Es-lds) between 0 and

T A Tx, we tind:

T AT
t -1
uxlx) = k fox X(p-l)&i exp{it - Ap fO 55 ds} +

L (T R
+ L[u\(x + BT)1(T<1X) exp{ArT ~ iy JO Q\ asti .




Theretore

T
. X t .p-1
0 € J(x,§,) - uyix) S CE [ ap explAe = Ap [0 §. dsidt +
x
T  p=-1
+C EII(T(‘X) exp{AT - Ap IO & ds})
and the tirst term may be founaed by:
. t p-1 @  §t c -6r f
> - < = :
C f; 5[1(rx>t) exp(At - Ap fo Ex ds)ldt € C fT e dt = rxe (because ot (13)) ; i

87 F
whlle the second term 1s bounded by C e .

Lettang T * ® we tind: ux(x) = J(x,Cx) , ¥ €0.

Now to obtain (12), we argue as follows: let a > U, we 1ntroduce
a : a
£ (t,w) = Ex(t,w) if e €T (w)

1/(p=-1)
- if ot 1w .
P X

. a
Obviously § € K1, now by similar computations as above we show:

1
0 ¢ J(x,£% - u () S E[f % cexplit - dp jg(e°)9"ds]dt1 .
T AT
x
And this last term may be bounded by:
]

T
. a a x .p-1
CELT - T exp(ATy - Ap [ ¥ EXT ds)) 4

a
T
-1
+C E[1 [ X expiat - Ap JE €P71 ds)aer .
a T 0 "x
(T<T )
x
But we estimate the first term by
°
- a.q' 1/q' e _ X p-1 1/9
C L[]tx i) E(exp(kth pq IO £, as)]
q' = EET and q € (1, +*) 1is determined such that:

a

T
Elexp(Aq T: - Apg fox 55_1 ds)) € ¢ (ind. of x, a) ,

-10-
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AT
x
this 1% possible because ot (13), cheosing g -t small enough, Now since Efe ] < =@

a a*y a.q' 1/q'
tor A < A nd sin T (w T (w); we sve that: E[|T - 1 |7 ] —* O,
) , am Ce T (W) —— T (w); e, o =%

Cene
Next, we estimate the second term by:

1

. X R t pp=-1_. << - t p-1
¢ hlI(T<rx) [ expre = ap [5 e0 ag)ar) ¢ f: 5[1(1x>c) exp(rt - Ap [0 P lds)ae

< % e-GT (1n view ot (13)) .

a
And we have shown: lim J(x,§{ ) = ux(x). This proves (12) and completes the proof of
a+0
Theorem I.1.
Actually, we proved more than Thecrem 1.1, namely we prove the

Corollary I.1: It X > A‘, then we have:

u, (x) = 1nt J{x,8) = inf J(x,&) = Jx,E )
X
EGK‘ Eexz

where Ex 1s the optimal control given by: Cx(t,w) = ux(x + Bt(w)).

Remark [.2: A teedback control like éx is called a Markovian control; thus we proved the

existence ot an optimal Markovian control.

Remark I.3: We would like to make a few comments on the Cauchy problem associated with (1)

namely:

%% -Au + Ad® = in 0x(0,+®), u 6 Cz(ﬁk(0,+ﬂ))
(14)

u(x,0) = uo(x) in 0, u€ c(0x{0,+*)), u = 0 on 30x [0, +%)

where u € CO(B) ={vec(d, v=0 on 30} and U * 0. It is well-known that there

ex1s5ts a unigue solution of (14) and it 1s a simple exercise on Ito's formula to check that
we have: WV¥x & 6, ¥yt 2 0

u{x,t) = inf (J(x,t,§) + E[uo(x + Bt)l

exp(At = 2p [ EP7 (s, w)as) )]
. 0
Eexo

(t<t )
X

T At
where J(x,t,§) = E[fox X(p-\)ﬁpexp(Xs - Ap fz Ep_'da)ds). Now, 1t A > X‘ and it

uO # 0, then it 1s well-known (see for example [6]) that u(x,t) E:: uA(x) in CZ(B).

11~




. senommm—.... T e A A Ao ——ra .

Theretore, 1n view ot Theorewm 1.1, 1t £ € Koy £ ¢ Ky (e gg)
lim Ef{u (x + b )1 exp(Ae - Ap T Cp_1fs)ds)] + J{x,8) » . (x)
—_— 0 L S ‘0 A

tet
P < x)

{indeed, tormally, this 1s the case when § vanlshes "a lot" and i1n this case the term
. t cp-1
Elexp(At - Ap IU £ (s)ds)} becnmes large.
Remark l.4: Everything we sdld 1n this section remains trivially valid 1t we replace -8
by a yeneral unmitormly elliptic second-order operator
A= -a  (x)3 +b (x)3  + cx)
1) 1) 1 1

where 3, 6 c(0), b,c6 Lw(OJ and ¢ ? 0O, 12 a”(x)ilﬁJ > VI&IZ weDd wEer for
some V > O, Then we just have to replace x "it by the diffusion process associrated
with A, We can treat as well Neumann boundary conditions or even more general ones as

%% +Y(x) u=0 on 30, vhere Y & c¢(30), n 1s the unit outward normal to 23

at the point x of 3(0.

1.2 1Interpretation of solutions ot semilinear elliptic equations.

Our goals 1n this section are first to extend the results of the previous section and
second to give a stochastic interpretation of some solutions of semilinear elliptic
equations. but as we will speak here only of optimal stochastic control problems and not
ot differential games problems, the only nonlinearities which we can treat here are either
convex of concave (we hope to come back on this point in a future study). To simplify we

will look for solutions of the foilowiny three types of equations:

(15) -8u + At(u) = Au in (, u € C2(5), u20 in 0, u =0 on 3,

where A > 0, t(0) = £'(0) = 0, t € C‘(R), f 1is strictly convex and lim fiéi = 4;
L4

(16) -8u = Af(u) in O, uec®®, u>0 in 0, u=0 on 30

1
where X > 0, £{(0) > 0, £ € C (R} and f satisfies

-1
- ei1ther £ 1s concave and lim f(t)t <0
(Al
-or t 1S cunvex.

-12=




Theorem I.2: It f & Cl(l), £(0) = £'(0) = 0, £ 1is strictly convex and lim

The first case (eguation (15)) 1s very similar to the case treated in the [roveiing

section, It is known (see {6], [3)) that tor A € A1 tne only solution or (15} .g

1

u U, wnile for A > A there are exactly two solutions 0 and Uy or (15} and Uy

1!
1s the unique positive solution ot (15},

With the same notations as 1n the precedinyg section, we introduce: V¥§ € KO

T
I0x,6) = ELf S ME 6(r,0))E(E,0) - r(E(t,0) ) explie - ) f; £0(E(x,w))de]

since f'(t) - f(t)t 2 0 for t 2 0, we see that: 0 € J(x,§) € +=,

Exactly as in the preceding section, we find:
f(t)

= 4@

(TS

then we have:
i) If 0« A< X1:

inf J(x,§) = inf J(x,8) =0, W € (0 .
EGK1 E6K

o

inf J(x,§) =0, v 6 0
EGKO

inf J(x,§) = inf J(x,E) = u,(x) = J(x,E ), ¥x € 0
geK, gex, ¥

where Ex is the optimal control given by: Ex(t,w) = u(x + Bt(w))-

wWe skip the proof of this result since it is absolutely identical to the proot of
Theorem I.1. Let us also mention that Remarks 1.2-4 are still valid here.

We now turn to the case of (16) when f is assumed to satisfy:

A

1 1
< T

(17) £6c'(R), £(0) > 0, £ is concave and lim £(t)t~
40

Then it is well-known (see H., Berestycki [6), P. L. Lions [37], H. Amann and T. Lactsch

[3]) that (16), in this case, has a unique solution u (whish is positive 1n (). we

~13-




denote by g{t) = t{t) - £(0) and by h{(t) =g(t) - g'(t)t, we keep the notations of

section l.! dnd we introduce tor § & KO the tollowing cost function:

t
Jex,8) = BUf N (A£(0) + An(Ee,w))exp(d [ £ (&(s,w))aslae]
then by a prooft identical to the proof of Theorem I.1 (even simpler) one finds:

Theorem I.3: Under assumption (17), we have:

ulx) = 1nt  J(x,&) = Jx,E ), Wx 60

©
EKO

where Ex 1s the optimal control detined by: Ex(t,w) = u{x + Bt(w))'

Let us also mention that analogues of Remarks I.2-4 are still valid here.
we finally consider the case of (16) when f 1is assumed to satisfy:
(18) t 6 C‘(R), f(0) > 0, £'(0) » 0, £ is convex .
Then it is well-known (see M. G. Crandall and P. H. Rabinowitz [12), I. M. Guelfand (23},
D. D. Joseph and T. S. Lundgren (24], C. Bandle (4], F. Mignot and J. P. Puel {391, P, L.
Lions [37]) that there exists a constant A € (0,+®] such that:
1) If A <X, then (16) has a minimum positive solution u;e In addition, we have:
(19) A8 - AET(uy)) > 0
ii) 1f A > X, then (16) has no solution;
iii) If A ¢ @, A = T and if (16) has & solution, then (16) has a unique positive
solution u_. In addition we have:
(20) * A(~B - 3t'(u)) =0, u = 1lim u .
X T X
In addition, in [12], [39) sufficient conditions are given insuring that X < ® and that
(16) has a solution for A = X. Finally let us mention that in {12} and in D. G.
deFigueiredo, R. D, Nussbaum and P. L. Lions (18], [19), various conditions on f are
given insuring the existence, for A < X, of a solution different from uye Nevertheless,

u is the only "stable” solution of (16) (the precise meaning of the stability is

A
explained in H. Fujita [21), P. L. Lions (35], [36]).
We keep the notations of the preceding section and we consider again the set Ko of

bounded progressively measurable processes £ such that:

-14-




E(t,w) 2 U a.e. 1n n* xq .,

But, nere 1n order to be able to detine the cost function we have to restrict our controls

§ to tne set (depending on X):

T
Kg ={& ¢ Kys E(fox exp(f; At (E(s,w))dsldt) < =} .

Then we define the cost function Ji(x,£) for £ & KS:

T
J(x,8) = Elfo" ME(E(t,w)) - t'(E(t,w))E(t,w)}eXp{fg Af'(E(s,w))ds)dt)
obviously J{x,§) 1is well defined since § 1is bounded (& € KO). Finally, we look for

uix) = sup_ J(x,8) .
EGKO

We have:

Theorem 1.,4: Under assumption (18) and if A < X, then we have:

uy(x) = ulx) = sup, J(x,8) = J(x,ﬁx), vx 6 0
Eexo

where €x is the optimal control {in Kg) defined by: EX(C,m) = uA(x + Bt(w)). In

addition if A < ®, and if (16) has a solution for A = A then we have:

u_(x) = u(x) = sup_ J(x,§) = lim J(x,E:). w e
Y £6Ky AX

where Ci is the control (in Kﬁ) defined by: E:(t,w) = ux(x + Bt(w))o

we see that if A < X, Ex 1s an optimal Markovian control, while for A = X O(if (1e)

A . .
has a solution) then Ex detine the so-—called €-optimal Markovian control. Let us also

mention that analogues of Remarks I.2-4 hold here,

X

?

Proof of Theorem I.4: We first show that: ux(x) > u{x), ¥x 6 O. Indeed let £ € KO’

just as in the proot of Theorem 1.1, there exists t @ such that:

>
nn

t
n L]
Ef1(xx>tn)explf0 At'(E(s,w))ds}) *+ o0 .

neo

t
Now, applying Ito's formula to uA(x + Bt)exp(f0 Af*(£)ds) between O and Tx A, we

find:

-15=
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i,
uy (x) = h[ux(x + Btn) 1(Tx>t )EXP(IO Af*(£)ds}t] +
n

t AT .
+ E[[U“ x{)‘f(ux(x +B) = AET(E(s)uy(x + B} eprz A (E) sukas

But the first term goes to O, because of the choice of the And the secona term 1s

larger than:

t AT
Ef " MOEE(s)) - Af (E(s))E(s expl[] At (§)dolds]
and this guantity converges, as n * %, to J(x,8) since £ € Kg.
Next, we define Ex(t,w) = ux(x + Bt(w)); since we have:

xi(-A - Af'(ux)) >0 ,
a trivial application of Ito's formula shows i) that Cx [ K;, and i1i) that
uy (x) = J(x,Ex). This proves the case A < A of Theorem I.4.
Now if A =X <® and if u exists, then clearly:
u (x) = lim J(x,EA) = lim u,(x)
by APY LTS
and 62 6 K‘; (for A =X) since A, (-8 -Tf'(ux)) > A (-8 -Xf'(u_x)) = 0. Thus:
u_x(x) <ulx), e 0 .
But on the other hand, if £§ € xg for A =X then £ @ Kg for every A < X thus:

J(x,8) € lim u,(x) = u_{x) and wulx}) =u _(x) ,
ArX A A
and this completes the proof of Theorem I1.4.
We would like to conclude this section by a general remark: we have seen in the three
above cases a stochastic interpretation of some solution of semilinear elliptic
equations. 1t seems that, 1in general, one can give a stochastic interpretation of stable

solutions of semilinear elliptic equations (in particular if one has X1(-A - f'(u)) >0

for the solution wu).
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[I. tepl-elygenvalies for the Haniiron-=Jaconl-Bellman operdtor.

II.1. Notations and assumptions.

N
Let 0 be a bounded, connected, smooth domdin 1n R‘. Let (1-‘\1)1)1 be a sequence of
unirtormly elliptic second-order operators:

1 2 1 1
AL = 'akl(X)akl + bk(x)3k + ¢ (%)

1 1 1 .
where akl' bk' c satisty:
1 1 1
(21) sup(la_, 1 + bk + Bc'l }aewm
’ 2 had
121 k& wz'”(o) K w? (0 U )]
k,2
. = N i 2

(22) Iv >0 Y121, Wwe ), Ve e6R: akl(x)ﬁl,ﬁl > viE| .

We will be concerned with the following type of equations:

(23) sup {Aiu - fl} =0 a.e. in (, u € w2'°(0), u=0 on 30 ;

129

where (f.

1) are given functions satisfying:

(24) sup Vf_ I 2, < ¥,

i1 W

This problem arises 1n connection with the general problem of Optimal Control of

solutions of stochastic differential equations via the argument of Dynamic Programming:

these equations are known as Hamilton-Jacobi-Bellman equations.

Let us briefly describe the associated Optimal Stochastic Control problem: we define
an admissible system A as the collection of i) a probability space (&, F, Ft, P) with a

right continuous filtration of complete sub O-algebras F_ of F, 1ii) a Brownian motion

t
B, adapted to F, iii) a bounded progressively measurable process 1(t,w) with values
in l., iv) a family (yx(t)) _ of solutions of the equation:
x6(
1(t) i(t)
=a - >
dy_(t) {y (t))dB - b (yx(t))dt, t 20
(25)
y =x
X

1 i 1 .
where 0 (x) = V2 (al(x)) /2 (tor example). For each admissible system A, we “etine a

cost function J(x,A)

1(s)

T
atx.ay = B [ 8 (y((t))exp(-f; My tshdsae

1(t)




where Tx 1is the first exit time from U ot the process (yx(t)). Finally, we minimize
J(x,A) overall admissible systems A:

(26) u(x) = inf J(x,A) .
A

Let us recall brietly a few known results: 1) If cx(x) 0 (¥w 60, VYo » 1) and if

. 2,
there exists u € W

(0) solution of (23) then u 1is given by (26) (and in addition one

can define ¢t-optimal Markovian controls); 2) It cl(x) » 0 and u gqiven by (26) belongs
b o

to wz' (0) then u solves (23) - for the proofs of these two facts, see N. V. Krylov

[26], M. Nisio [40], A. Bensoussan and J. L. Lions {5]; 3) It cl(x) » 0, then there

L]
exists u € wz' (0) solution of (23) and thus u is given by (26) ~ see P. L. Lions (311},

L. C. Evans and P. L. Lions [17) for the proof of this result; in N. V. Krylov (25], H.
Brezis and L, C., Evans [9], P. L. tior: {29), L. C., Evans and A, Friedman (16}, P. L. Lions
and J. L. Menaldlr (38]) some ,revious results concerning the solution of (23) were

obtained. Finally let us mer .on that the most general results concerning the solution of
(23) are given in P. L, Lions '301, [33], {34) - including the case when the operators

a degenerate.

Remark Il.1: In these references, sometimes, instead of "control” processes 1i{t,w) with

values in l’, are ti.ken controls v(t,w) with values in a closed set of R" (for
example). In this case the only additional assumption is that a(x,v), b{(x,v), c(x,v),
f(x,v) are continuous with respect to v and everything we say below temain; valid in
this case (remark that by taking a dense family (vi)i>1 in V, one can reduce this case
to the preceding one),

Before concluding this section, we want to mention the method of proof used in ([31],

{17] in order to solve (23): one considers the following penalized system (for each

m> 1 fixed):
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1 1 2 - ]
- = 3 ) =
Ay ug o+ ﬂztuE u) t, an 0, u_ e (), u, =0 on 30,
2 3 2 2 —= 2
- = Y =3 =
A, ug + Bs(ue u.) t2 in (o ug 6§ C(Q), ug =0 on 0,
(25) .
m m 1. v ML L2 m .
A ug + Bc(us -ug) = £, 1n 0w € ¢, ug =0 on 0 ;
o0
where B_(t) =L B(t), 86 C (W), B(t) =0 1f t <0, B'(t) >0 1f t >0, B (L) >0
1f t > 0.
In {3t], [17); it is proved that 1t c1 2 0 (vi 2 1) and it we assume (21), (22),
(24) then: qul 2@ € C {indep. of m and of ¢); and, as € goes to O,
W' (o)
1 2,% . . .
u ) +* u 6 W () which is the solution of
(SR ¥0)] 2@
(23-m) sup (A u -f ) =0 a.e. n (b u €W (), u =0 on 3 .
im 1 [ m
1€1€m i
.. . 2, . . .
Since, u, 1is bounded in W () taking m * ®, one obtains the solution u = lim u
m
of (23).

Remark 11.2: But, an easy examindtion of

. i
small enough there exist (u€)1<i‘m solut
€, 1, m) and if we assume (21), (22) and

sup 'fil o ¢ »

i21 w' (0
(24")

N

4C > 0, ¥Xx € R |x| =1

then we have: qul 2.m € C (indep. of
wo ()

[31), {17), a solution of (23-m) tor all

remark many times 1n what tollows.

'

the proof of [31), (17) shows that if for €
ion of (25), 1f W'k _ < C (indep. of
L (0)
[
aef1
5 €C in DY) (Wi > 1) ,
ax
€, 1, m) and we ohtain in this case, as 1in
m and a solution of (23), We will use this
1YY=




Remark II.3: 1In L. C, Evans [14), [15], 1t 1s proved that 1t (2%), (22) ana (24) are

a
Cz' (V) for some . < & < 1

satistled then any solution u of (23) satistles: u &
(depending only on and the bounds 1n (21), (22) and (24)).

In wnat follows, we show in section Il1.2 that rouyghly speaking, 1f (23} possesses a
pair of ordered sub and supersolutions, then there exists a solution of (23) between these
two functions. This auxiliary result will be one of the key ingredient which enables us to
prove 1in section II.3 the existence of demi-eigenvalues such as indicated in the

Introduction. Finally in section Il.4, we present various applications and comments on

these demi-eigenvalues.

II.2 An auxiliary result:

Let fi(x;t) be given functions on 5 x R satisfying:

(26) sup lfi(x,t)l 5, @ < ¥ , VYR C®
i1 we’ (OxBR) |

where B = {¢ 6 R, [E| < R}.
We will study in this section the equation:

sup {A u(x) - fl(x,u(x))) =0 a.e. in 0
1”1
(23°)

2,

L]
ue W' (0), u=0 on 30 .

We will assume that there exist u, u respectively subsolution and supersolution of

(23') that is satisfying:

sup (Aig(x) - fi(X,E(x))} €0 a.e. in (
i»1
(27) sup {A U(x) - £ (x,u(x))} > 0 a.e. in 0
i1 ‘
E,EGWZ'Q(O),\j(U(U on 30, u<u in 0 .

Then we have the

Theorem 1I1.1: Under assuptions (21), (22), (26) and if there exist u, Iy satistying (27);

then there exists u solution of (23') which satisfies in addition u € u € u 1n (.
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A This result will he very usefal 1in tne tnllcwing sectlons and Of Course 1s an
extenslon of the well-known resuit corresponiing Lo the case Al = A(v121), L (V121

(see he amann (1], (<] tor tnis speciral case),

' Proot ot Theorem ll.1: We first make some preliplnary substltutlons: there exists K oo o

such that: cl(x) + K2 1 an IiVx) ang tl(x,t) + Kt 15 1ncreasing for t € (—CO,CUI

(where Cy 18 some fixed constant larger thdn max { Ml o , 1 - ). we will denote by
L (0) L (0)

~

Il(x,t) the functions detined by:
El(x,t) = £ (T A UKD+ KT A UK))
and we denote by Rx the operator:
Ri = —a:l(x)Qil + b;(x)3k + ety v )
we tirst claim that 1t 1s enough to show the existence ot u satisfying:
sup{;\iu(x) - El(x,u(x))) =0 a.e. in 0

1)
(23")

u € WZ'Q(O), u=0 on 3, u?> u in o .

Indeed 1f this 1s the case, remarking that we have:
£, (xu(x)) € £ (,Ulx)) + Kulx) in O
we deduce from the definition of u:

sup{RIG(x) - ;i(x,c(x))} >0 a.e, 1n 0
121

Tew™0), 520 on 30 .

and we conclude: u € u in 0, from the following lemma:

Lemma II.1: we assume (21), (22) and let (f ) (ql)

ilin be two sequences of functions

121
satlstylng:

sup{dt 1 _

+ 1g & } <o £ 329, a.e. in 0, vi 21,
v P Ut *

1

20’
we assume there exist u, v € W' () satistying

sup(A u ~t ) ? a.e. in 0, sup(A v -g.) € 0 a.e. 1n
i ! t ! !

u?2v on 30 .
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i) If w?v in (, then either u = v in 0 or wu(x) > v(x) in 0 and
du 3

3% < 3% on 30 (n denotes the unit outward normal).

1) 1f clx) >0 (vi > 1, vx €3) then: u>v in ©.

(The proof of this Lemma will be given later on.)
Next, to prove the existence of u satisfying (23"), we argue as follows:
m fixed, we consider the penalized system:
( ~ 1 1 2 ~ 1 1 2, = 1
Rug + Blug = u) = £ (xu) in O ugec’@), ug=0 on ¥
(25') (-

~ m m 1 ~ m m 2, = m
L Agle * Se(us - u) fm(x'“e) in O, u. e c(p) u =0 on v .

Obviously u is a subsolution of (25') since:

Vi1, Ru < E Oqux)) in 0, uew (), u<0 on W0 .
Next, recall that in view of the results of L. C. Evans and A. Friedman [16] if
CIVERRN- M e C(5), there exists a unique solution U = KF of:
RN Be(u1 - uz) = f_ in 0, u' e wz'p(O)(p < =), ul - 0 on 30

1 1

(25") .

L Kmum + Be(um -uly = £, in 0, e wz'p(o)(p <=, " =0 on 30

where U = (u1,...,um), F = (f',...,fm). In addition K is a compact mapping
1

for each

from ¢(0)

into C(a) and: KF1 > KF2 if F > F2 (where F1 > Fz means t1 > fi, for 1 € 4 < m).

i

Now if v ec(D), v>u in O then Uf (x,v)l ,  <C (indep. of €, i, m)
L (0
(see for example [16], [38})

sup |Ki(v)l © ¢ C,(indep. of €, i, m)
1<i¢m L

where Ki(v) is the solution of (25") corresponding to 9; = Ei(x,v). Then if

c={vec), v>u in 0, Ivh ,  €cC}, the map (Ky(v),eer K (V) 15 a
L (O)

-22-
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thus by Schauder

A9

coptinuaus map trom the convex set O anto U and
1 u]
there ox1st  (U_,eee,U.) solution of (25') and 10 addition we
< [
1 —
u. 2 u 1n (0, dulk <
C - o0
L0

but this last

mentioned in Remark 11.2:

¢ (indep. ot £,

And passing to the limit (&€ * 0, m * ®) exactly as 1in

Of U satistying (23%).

Proor ot Lemma 11l.1:

by exactly the same arqument as 1n the prool of uniqueness in P.

1

1, m)

f1e],

we. will only prove part 1) of lLemma II.1 since part 11)

fixea ol1nt rheorem,

tiave:

bound enables us to obtain the tollowing estimate ny the same method as

(31] we prove the existence

And this completes the proof of Theorem I1l.1,

1s obtalned

L. Lions (31].

Now, to prove 1), we first claim that we may assume without loss of generality that
1 .
c (x) 2 >0 (tor some a > 0). Indeed we have for all u > O:
sup(A u + Bu -~ (£ + Wwu}) > 0 a.e. 1n O
1 1
129
SUPWA VvV + UV ~ (g + Wv)) €0 a.e. an C
1 1
IR
and cnoosing M large enough, we are done. ‘Thus we assume: rl(x) > a >0
(v > 1, ¥x € (.
Next, we remdrk that we have:
2, -
sup(A (u -~ v) 2 0 a.e. in 0, u=v € W' (M, u-v > 0 in (¢ .
121
o
Ang thus there exist akﬂ' Sk, Y& L () satistying:
a ,3? (u-v) + 8 3 (u-v) + Y(u-v) > 0 a.e. 1n O
k& k& k 'k
a ()6 6 > v[E(? vE e RY ase. x & 0
kL k7R
Y(x) ®> @ a.e. 1n (Q .
We may now apply bony's maximum principle [#] to show thdt elther u 2 v or u > v in ¢.
Aand 1t u > v 1n (', tollowiny the proot ot M. H. Protter and H. ¥, weinberyer [(41]
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Ju v
concerning tne Hopr raximum principle, cne ontains edsily: w= (== Cn 3.

I1.3 Existence and properties of deml-elgenvalues:

we will keep the notations of the preceding sectiwns (Il.1 ana 11.2) ana we 1ntrouce
the nonlinear operator A:

a
A¢=sup(Al;)GL(0). 1f s 6 W o .
121

Let us recall that we denote by A1(A1) the first (or lowest) eigenvalue ot the operator
Al {(with Dirichlet boundary values).

Our main result is the following:

Theorem II1.2: LUnder assumptions (21), (22); there exist two constants A1, X1 such that:

i} The following inequalities are satisfied:

(28) A, < ir;f Aa) € f:f A () <X

(29) 1f c*x) 20 in D forall i >1; then: A >0 .

i1) If A< §1 and 1f (fl(x))1>1 is a sequence of functions satisfying (24) then there
exists a unigque solution u € wz'a(O) ot

(4) sup(Aiu -fx) =M a.e. 1n (0, u=0 on 30 .

it

ii1) If A< X} and 1f (fl(x)) is a sequence of nonnegative functions satisfying (24)

«
then there exists a unique nonnegative solutionh u € Wl (0) ot (4).

2,%

1v) There exist v1, w1 G W (0) satisfying:

= = e€s 1 9 = 0
(5) A¢‘ ::$(A1¢1, 5101 a.e. in 9, ¢, <0 1n 0, ¢ 0 on 3(
(6) Av, = sup(A.¥,) = Yv. awecin O, ¥. >0 in 0, v, =0 on 30 -

2,

v) Let (¢ A) 6 WXT(() x R satisfy:

A¢ = Ay a.e. in , =0 on 30 .

If ¢SV in 0O, then X =X and ¢=9¢1 tor some 6 » 0. And 1t ¢?> 0 1n ¢,

21

S

then A = X1 and ¢ =9y  for some 8 2 0.

1

-24-




wepark llea: In view ol thls resaprt, 1t 1§ Cclear that A], T‘ [2lay the r.... ! e 'ir %
vlyehvalue i Lhe nolilliaetal Operator A . Al we Seee Unul Lhe honlineasrit, e 14
rorm and whius typlcally Llpscnlts rounly Spedxllig) Creates d pdlr O What v [

ergenvaiues.  This phenonenoll was flrst observest by h. berestyckl [7) 1n a trrtally
difterent setting namely bifurcation theory with non~ditferentiable mappings: 1n {7) was
considered the case:
+ ~ 2
~u® = Au - i in (0,1), ue C7 ([0,1}), ut0) = u(¥) = ¢

where A, U > 0. But this 1s actually a particular case ot the above case: 1ndeed set

u = Aa and remark that the above equation 15 equlvalent to, 1t & 2 1,

max {-u", - u") = Au 1n (0,1), u € C2([0,|]), u(0) = u(r) =0

and to, 1t a € 1,
; " 1. ) - 2
min(-u", - Zu ) = Au in (0,1}, u € C7(l0,11), u(Q) =u(1) =0 .
since 1n this specltic context 1t 1S posslble to show the existence of infinitely many
deml-elgenvalues, 1t would be 1nteresting to see 1f thls remains true in the general
context ot Hamilton-Jacobi-Hellman equations.

Remark II.5: Let us mention that, using the results of L. C. Evans {14}, {15] one can

o —— e .

prove ¢‘, W] [ Cz'a(o) {for some @ € (0,1))., In addition from lemma II.1 one deduces:
E) 9 .
n (#,) >0 on 30, 37 (¥) <0 on 3 . rinally let us mention that part 1i) of Lemma

I1.) remains valid 1t X‘ > 0 while 1t remains valid it XA _ > O and 1t ti' g., G, v are

1 1

nonnegative.

1t 1s possible to give a purely analytical proof ot Theorem II.2 without any help trom
Probability theory but we prefer to make a simpler proof which uses both Partial
Ditferential kquations and Probabilistic techniques. This will enable us to prove at the
same time (we keep the notations of section II.1):

Theorem 1ll.3: Unaer assumptions (21), (22); the two constants X1, Xl ot Theorem I1I.2

satisty:




1) we have
———

T )
T sup(A € R, sup sup E(f X exp(it - }'t cl(s)(y {s))ds)dt] < =)
-1 = [§] Q x
xe( A
{30}
% 1)
= sup(A 8 R, sup sup E[lexp(AT - f x b (y (t))dr)) < =)
= X 4] x
xe( A
' t 1(s)
X, = sup(A € R, sup 1int E[] * exp{it - | s (y (s))ds)dt] < =)
| L 0 0 x
x6( A
(31)
' 1(t)
= sup(A 6 R, sup int Elexp(A1_ - [ ¥ ¢ (y (£))de)] < =) ;
= X [¢) X
xe( A

1) 1t A« §1 and 3t (f (x)), 1s a sequence ot functions satisfying (24) then the

21

unique solution u in WZ'Q(O) 25.(4) 1S given by:
Tx t i(s)
(32) u(x) = int E(f t ey Yy (T explie - foe¢ (y (s))dskae]

111) _Iﬁ_ A< -)&_1 and 1f (t'i(x)).1>1 is a sequence of nonnegative functions satisfying

(24) then the unique nonnegative solution u ot (4) in NZ’D(O) is given by (32).

We may now turn to the proof of Theorems 11,2 - II.3 which is divided in several
steps: we need first to introduce a tew notations. We will denote by B the nonlinear
operator detined by:

By = inf (a,¥) € L"(O), for v e wz'.(O) .
i21

And we introduce the sets I and J:

2,%

I ={A6R, 3Ju 6w (0): Aux=ku/\+l ase, 1N 0'“A>0 in O,ux=0 on 30}

A

21.

J={AeR, 3v, €W (0): Bv/\=Av)‘+1 a.e. in 0,vx>0 in O'VX=0 on 30}

A

- 1n view ot (17]), 1if X‘-suplcil_ , A61nd -
121 L (0)

Our proot consists ot s1x steps: Step 1: There exist §1, 'x1 € R U (+%) 3uch that

I = Juoe, T‘{ , Jd o=)-=, é‘l and 5‘ < X1; Step 2: } (resp. Y‘) is less than .he

1

constant detined in (30) (resp. (31)) and they are finite; Step 3: Proot of parts ii),

=26~
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S N

111) of Theorem II.2 and of parts 1i1), 111) ot Theorem II.3; Step 4:

iux“ olrESp. ﬂvxi o) T as A s X] (resp. A * Al) and proot of (3U) - (31); step S:
L L
Proot ot parts 1v), v) ot Theorem 1I1.2; Step b6: Proof ot part 1) of 'Theorem 11.2.

step 1: There exist A, T1 € R U{#} such that I = ]-w, 'X1 land g = j~=, A [ and

A SN
1 1

We tirst prove that 1t A &€ I (resp. A € J) then u € I (resp. # & J} ftor all
uw € A, Indeed, let us take tor example the case ot I, 1t A& I than for u € A:

> i g 3 = 3
Aux uux + 1 a.e. in (, uy 20 in O, uy 0 on 3

p L
while obviously: AO = 0. Thus by Theorem II.1, there exists uu € wz' ) satistying:

Au = wu +f a.e. in (b u, 2u 20 1n 0, u =0 on 30 ;
u " ' A u ¢ u 0

and U ¢ I.

Next, to prove that, tor example, 1 1is open, we argue as follows: let A € I, we
need to prove there exists € > 0 such that A + € €I. but, 1f k 2 1, we have:

A(kux) = A(k uy) o+ k = (A4€)k uy + 1+ {k -1 - ek ux} a. e. tn (.
Thus choosing € small enough such that EIuAI - < 1 and k ? 2, we obtain:
L (%)
Mkux) > (X+€)(kux) + 1 a.e. in 0, kux =0 on 30 .

Since AQ = 0, we deduce from Theorem II.1 the existence of u(=u ) such that:

A+E
Au = (A+€) u + 1 a.e. in @, u? 0 1n (O u=20 on 30.
Finally, if A € J, we have:

AVX > ka = Avy + 1 a.e. in 0, v, 20 1n 0, v, =0 on T

and since 0 = 0, we conclude that A € J from Theorem II.1.

Step 2: } (resp. X,} is less than the constant defined in (30) {resp. (31)) and they

1 1

are finite,

More precisely, we denote by U

Uyr u]:

T
u, = sup(A € R, sup sup E[f ¥ exp(At - ft cl(S)(y (s))ds)dt] < «)
-1 = 0] V] X
x€(Q A
- x t (s)
uo= sup(A € R, sup 1int E[/0 exp(At - fO ct'® (yx(s))ds)dtl < @),

x60 A
It 15 a simple exercise that we skip to check that u_, E‘ are also given by:

~1
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T

¥, = sup(A € R, sup sup Elexplidt - | x cl(S)(y (s))ds}] <« =)
-1 X V] X
xs0 A
Tx a(s)
31 = sup(}A ¢ R, sup 1int E[exp{)“rx - I() s (yx(s))ds}] <« w) .
X6 A

Next, let A € J (for example) and let us prove that A € u . Let v

h that:
4 A be suc ha

BVA = XVA + 1 a.e. in 0, vy 20 in O vy = 0 on 30, Let A be an admissible system,
t i(s)
we apply Ito's tormula to vx(yx(t))exp{lt - IO c (yx(s))ds) between O and T A Tx,

and we find:

T AT R
vx(x) = E[vx(yx(TATx))exp[XTATx - IO ¥ cl(t)(yx(t))dt}] +

TAT .
A X _ [t _i(s)
+ E fo (A g) Y, (e)) = dvy(y (£) Hexp (e fo c (v, (s))ds)dt}

and this yields:
T, t i(s)
v (x) >k fo exp(it - jo c (y (s))ds)dt

tor all T < *®, Taking T * %, we conclude.

It just remains to prove that U} is finite (i.e. 71 < +2), Without loss of

generality, we my assume that for some § > 0, Q = }O, §(Nc o. and clearly i1 < U where

¥ is given by:

T .
¥ = sup(: 6 R, sup inf E[fox exp(it - f; cl(s)(yx(s))ds)dt} ¢ »
x€0 A

where ?; is the first exit time from Q of the process yx(t).
Now consider the one dimensional control problem:
N
ay (t) = [ o (t,w)dW () + p(t,w)de, y (0) = x & (0,6)
J=1

where oj, bj are any progressively measurable processes such that:

N
1
Ve ) |a,|2 <w , |b}] <c
3=1 J
where C is such that: Iat‘l o < v, ﬂbtl a € C. Therefore, it i3 clear that
L (V) L (V)
-28-




< qJiven by:
Y UU jiven by

J
U = sup(A € R, Sup int El) * exp(At - A t)dt] < =)
[V} ~ V] ]
xe{0,8]) A

~

where A 15 any admlssible system corresponding to the one-dimensional provier, where Jx

1
1s the first exit time trom (u,8] ot Y, (t) and where AO = sup dc 1 e We Claln LOW

1 Lo (W)
that p 1s also given by: .
V]
2 A4
= . [P . - n 3 = (6
e sup(X € R, duy €C ((0,81): vu" o+ |u'] T u, + 1 1n 10,61,
> = = .
uy 0, UA(O) uA(G) 0)
Indeed 1t we denote by Eb this last constant, remarking that the following equations are
equivalent if A 2 A
0
A 1
—vu" = - [} >
vup o+ Jujl = ——=uy + 5 n 10,8(, u, >0

or

max (-aux + bui] = (A-Ao)ux + 1 an 10,68, vy >0
v€asCy
|pj<c

we already know that if ib > AO then uo < uo. But 1t is very easy to show that

;0 > AO and thus we know that Eb € Mje UWext, we show that if Eb < ® then }ulem + 4o

as A » 36. Indeed 1t it is not the case, there exists u_ solution of:
u0
W.o-A
- w4 fu | =-—9—-C——2u_ +1 in 10,8(, u_ ¢ c%(10,8))
u0 u0 uO u0
u_(0)=u_(§) =0 , u_ 20 1in (0,8] .
Yo Yo Yo

But since the set of A such that there exists u, as above 1s open (see Step 1) we have

M, 1t I 18

a contradiction with the definition of i@. Thus, |uA| >t as X » o 0
L

finite, But, by the same argument as above (applying Ito's formula), we see that tor

A
< DU

d
uy(x) = ¢ iﬁf E[fo" exp((A - A )t]de)

-29m-
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(since

A< uo, this is a verification result totally similar to those introduced in N, V.

Krylov {251, {26]).

Since

max uA(x) + ™, as A * Eb, one sees immediately that

(0,8]
o _ _
sup inf E[f ¥ exp{(W. - A )t)dt] = +»; thus u_ = §..
~ o ] 0 0 0
[0,8] A 2
We now conclude by proving that By € . Indeed let A < ¥o and let u, €c ((0,8))
satisfy:
A-AO
- vup o+ |“il =y + 1 in Jo,8[ , u, >0, uA(O) = “A(G) =0 .

a
As indicated before: uR(X) = C inf E[fox exp{(A - Xo)t}dt] and thus is unique, therefore

A

u, (x) = ux(G-x) for x € [0,6). 1In particular ui(%) = 0. In addition it is easy to

[
prove that: u! > 0 on [O, 3] (one may use for example the general results of Gidas-Ni-

A
1

Nirenberg [22]). Now from the equation one sees that ux ew ’-(0,6) and v = ui

satisfies:
A=A s A
-V ¢+ v o= v in ]0,3[ , vi0) €0, V(E) =0
§ 1 )
vecio,n c' o,z
A=A
and thus is less than the Iowest eigenvalue AI of the operator
a® a 5
-V ¢+ @ o the domain ]0131 with Dirichlet boundary conditions at 0, Therefore

[
Step 3:

dx
u, < AO + CA, and we conclude.

1
Proof of parts ii), iii) of Theorems I1.2, II.3:

Let A €J (i.e. X < 51), from the definition of J, there exists Uy, v, ew

2:%(0)

such that:

Au, = Au

N A 1 a.edin 0, uy 20 in 0, u = 0 on 30

A(-VA) = X(-vx) -1 a,e. in 0, -v, €0 in , -v, =0 on W0 .

And thus i (Ex(x))l>1 is a sequence of functions satisfying (24) then for k large

enough we have:

::? (A, (kny) - f‘) 2 Alkuy) a.e. in 0, ku, >0 in 0

=30~




-

i:ﬁ [Al(-nvx) - rll < X(-kvA) a,e. 1n 0, —kvx €0 in 0

-]
and we ueduce trom Theorem II.2, the existence of u €& w2' (0) solution ot:

sup (A u -t ) = Au a.e. in 0, u=0 on ¥ .
121

In the same way, if A < X} and if (fi(X))i>1 is a sequence of nonnegative
tunctions satisfying (24), we prove the existence of a nonnegative solution u ot the same
problem {in this case take 0 as a subsolution since fi >0, Vi » 1).

Finally to prove uniqueness ot such solutions u, it is enough to show the stochastic
representation (32). But this 1s a simple remake of the arguments introduced by N. V.

Krylov (25), [26], using the fact that if A < §1 (resp. X < T1) then X < u (resp.

Step 4: ﬂuxl w T ¥® as A >* X, lvxl w ? ¥ as A > X‘. Remark first that in view of

—_ 1

L L
the representation proved above:

T
uy(x) = 1nf Elf * exp{At - ft cl(S)(y (s))ds}dt)
A 0 0 x

T
vy(x) = sup E{fox expl{it - f; cl(s)(yx(s))ds}dt) ;

A
this implies immediately: 51 = El' X} = i]; that 1s part i) of Theorem 1I.3. Let us
prove now that, for example, ﬂuxl o + +® as A >* T]. I1f this were not the case, there
L (0)
would exist An bt A] such that 'uA i, €C (indep., ot n). We are going to prove that
n L
this would imply: IuA ] 2 S C (indep. of n). But this would show that there exists
2 n W)
u €W’ () solution of
p)
1
Au = X,q_ +1 asecan 0, u 20 in 0, u =0 on 30
- X . _
X1 1 X1 A1
(pass to the limit, as n * ®, as in [13], [le])., And this would contradict the

definition of 7} since I 1is open (Step 1).

Theretore, we need to prove: luX ] 2® € ¢ (indep. of n) as soon as qu ]
n W (O n ntL
1S bounded., To simplity the notations, we denote by u = uy . Without loss of
n

1
Jenerality we may assume that ¢ 2 0, M 2 1 (it this 1s not the case, add a constant to
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both ¢! ana A ). As 1n the proot ot Theorem 11.1, we know there exist Lvrinn
n

ot: (m 2 1 1s fixed)

nyd un,2

r n,1
A . u + BC(ue € nVe o

1 €

u,m n,m _ n,1 Y n,m + 1
h AL u’ Be(ue u’ ) alue’ A ) in 0

n,i

- = 1
with uS" € CZ(O), ot me

e 20 in o, vt o= 0 on 30 and where Co > W
n,il

L]

L ()
But this implies as in Remark II.2 and in the proof of Theorem II.1:

L)

(¥n » 1), 1In addition lJu <C for some ccnstant C, (indep. of m, n, 1, €).

', €cC, (indep. of m, m, i, €) .
W)

~n )
Now, taking € * O, m *+ ®, we obtain the existence of u solution of:

2,% n
o, W, <,

A" = A (@ . c,) + 1 in O, e w
n w0

n

W0 in 0, u =0 on 30 .

R ~n n o .
To conclude, we are going to prove that u = u , bBut, rewriting the above equation as

+ 2,®

A" e A @t -t =aat e an 0, 3" e w0

> 0 in 0, L 0 on 30 ;

we prove as above that any solution of the preceding equation is given by

T
~n . x t i(s)
u(x) = ;ng E(fo {1+ s(c)xnco}exp{(1 - S e - [0 ¢ (g, (s))ds)dt
’

where d&(t,w) is any progressively measurable process with values in {0,1}. nNow since

lunl - < Co' u? is also a solution of the preceding equations and un = ;n.
L (0)
Step 5: Proofs of parts iv) - v) of Theorem II.2,
From step 4, we know that lu,l + 4@ ag A+ X1 and v, 0 + +®  ag
L () L ()
YA !
A §1. w; :hen define wx = - TV;T . and Wx = TG;T . 3 obviously we have:
Par ¥y Ew O L (O) L ()
-32=-




A A ﬂuAII o A
LM
.o L 3 , - 3
AVA = XWX o1 a.e, 1n (, 0X <0 1n O, WA 0 on 30
A
L (M
and vy} = Iy 1 = 1,
A o A
L (o L (O

Now exactly as in the proot ot Step 4, we obtain:

TN <c. o, g
0 A W2 (o) 0

where Cy does not depend on A (for A > 51 - 1). And passing to the limit as A * 31

or A+ T‘ (1n the same way as in [13], [16], [31]) we obtain part iv) of Theorem II.2.

2,

L
We next prove part v) of Theorem 11.2. For example let (§,A) 6 W () x R be such

that:
Ap =AY a.e. in 0, $ 20 in 0, ¥=0 on 30 .
wWe first show that A = Y1; indeed if A < i}, it is then trivial to deduce from the

stochastic representation (or the uniqueness) that ¢ = 0 in Il On the other hand if

A > A1, we argue as follows: first, we remark that Lemma II.1 implies that 1f ¢ Z 0,

there exists «, B = 0 such that: BW1 >y > uwl >0 in 0. Now by the same verification

method as the one introduced by N. V. Krylov [25), [26] one obtains easily:

TAT
. i(t)
Wi(x) = 1:£ E[w1(yx(TAtx))expfx1TAtx - IO X ot (yx(t))dt}]

TATx i(t)
¥(x) = int E[W(yx(TAl’x))exp{XTAtx - fo c

n (yx(t))dt}]

tor all T < ®. Therefore:

TAT

. 1 . x 1i(t)
< — J - .
#1(x) 3 1:: x-:w(yx('rux))exp{xrux fo c (Yx(t.))dt} ‘(T<rx)]

-(AJI1)T 8
Se 3 ¥, (x) in o .
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and choosing T large enouyh, we obtain 4 contradiction that proves: A= X].

We now show that, necessarily, ¢ = &w1 tor some 6 2 0. Indeed, let us tirst remark

that by a simple application ot Lemma Il.1 we have:

a
$(x), ¥ (x) >0 tor x 60, Ty T <0 on 0 .
Thus 1t ¢ # ew' (tor any 0 > 0), and if we denote by
6 = sup(u > 0, uwl < V¥ 1in )
then necessarily: ¢ 2 Owl in 0 and "2 3 GWI. But let XA > 0 be such that A + i1 > 0,

we have:
Ay + AY = (X +71)w in 0

> (A +X1) (9w1) =A(s¢.1 +x(ew1) in 0 .

And applying Lemma I1l.1, we deduce: § - 0w1 >0 in ( and %F (p - 9W1) < 0 on 30.
Thus there exists € > 0 such that:

(B+e)% < ¥ in 0 ,
and this contradicts the definition of 6. This proves our claim. (Let us mention that
the above argument is an adaptation of a device due to T. Laetsch (24].)

Step 6: Proot of part i) of Theorem II.Z2.

We first prove (29): 1indeed in view of [17], if c1 2 0 (Vi » 1) then there exists a

w2

solution v_ € (Q) of

[\]
Bv0 =1 in 0, vo=10 on 30
and thus 0 € J; since J 1is open, this yields (29).
From (5), we deduce:
a.e. in 0, $, <0 in 0, #, =0 on T
but this implies: Xl(Ai) > 31; and we obtain the first part of (28).
Finally to prove the second part: let A < sgp A1(Ai), there exists i such that
A‘(Al) > A. Thus, it is well-known that there exi;ts Kk € Cz(a) satisfying:
Ai'u’x==|+xﬁx in 0, v >0 in 0,4 =0 on 30 ;

and therefore: A;X > 1 4+ XEX in 0, Ex >0 in ). since we have: A0 = 0 € 1; applying
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Theoren li.! we obtain the existence of UA (between 0O  and GA' satistylng:

AUA = 1 + \UA a.e, 1 0, uy 2 ¢ an (, Hy = U oon 3¢ .
us A e [ ana A < Il' This proves (28) and completes the proot of Theorens [[.2 -
fl. 3.

Kemark ll.o: As we will see in the next section, Al and X1 possess many of the
properties ot the lowest vigenvalue tor 4 second-aorder unitormly elliptic operator. For
the moment let us just mention that, obv.ously, A1 = X1(Al) (for some 1 » 1) 1f ana

unly i1f, denoting by vy the eirgenfunction corresponding to A1(Al), we have:

- A >0 1 1 .
!\Jv1 ALY, 0 in O, for all 3 # 1
In this case we have 1n addition: ¥, = —9v1, tfor some 8 > 0. 1Indeed 1f X] = A|(Al),
we have:
. . < o) " s o )
A v, X1(A1)v1 ¢ 1n 0, $, <0 1n Q, 7, 0 on 3(
and this 1mplies: ¥y -5v1 tor some € > 0; and we conclude.
In the same way, X& = A‘(Al) 1t and only it we have:
Av, -Xv, €0 in 0 for all 3 g1 .
J 1 11
In this case we have 1in addition: W1 = 0v1, tor some 6 > 0.

11.4 applications and properties ot demi-elgenvalues.

we first give a very simple biturcation result which has only the value of an example.
We keep the notations of the preceding sections and we consider the equation:
(33) Au + X|u|p_?u = ace. in 0, u € W2'™(0), u =0 on 30
and we take XA > 0; we assume (21), (22) and ci ? 0 (v1 2 1) tor simplicity. Finally
let p > 1. We will consider here only the existence ot solutions with constant sign.

we then have:

Theorem I1.4: Under assumptions (21), (22) and if ¢! > 0 (¥i » 1); then we have:

1) It A< the only solution ot (33) is: wu = 0.

[¢8

"

1i) If A< the only nonnegative solution of (33) 1s: u

[ —

11i) I1f A > A, there exists a unique negative solution EX ot (33).

vy If A > xl' there exists 4 unique posltive solution E\ of (33),
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In »nther words, we have tne tollowlng plturcation dlayramr 10r the eqgquanti i

tor solutions ot constant sign):

u 4\

Figure 1

Remark II.7: It is possible to give, as in part I, the stochastic interpretation of Uy

uy: we will not ao it here. It is also possible to show that u. Ex are continuous with

respect to A (in the space C1'a(3) for any @ < 1) and that u, *+ 0 as A+ }1 and

u

A + 0 as A > T‘.

Remark II.8: On some simple examples, it is possible to show that there may be between
51 and X} bifurcation of continua of solutions with no constant sign.

Remark II.9: This type of split bifurcation diagram (and of the existence of demi-
ergenvalues) is intimately connected with the Lipschitzian character of the nonlinearity

arising in A: we will give below a striking example explaining this claim (see also [(7]).

Proot ofTheorem Il.4: We first show parts i) and ii). Now if A < 51, using Theorem II.3

(and the fact that d(x) = X|u|p-1 >0 in ), the stochastic interpretation of:

. 2,®
Au + du = Au a.e. in (0, u €W

(0)p, u=0 on 30 ,
immediately yields: u = 0.

Next, it A € Xl' the claim tollows obviously from the following lLemma, proved belcw:
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eening Ll 2t Ceder assamptions L 21), (22); a4t et C1T. he 4 founiea Seguer e 1
© . 2%
nonnedqative tunctions in Lo (Q). w0 AUre Tlheere X158 vid) & A ) = R - oot an
1
(34) sup (Aly +aty) = Ay a.e. an 0, y= L oon X,
121
vy it ¢y >0 1in (, then X 2 T‘ ana A = X1t ang orly it oy o= By, (ror sere
1
9 > 0): 1n particuldar we nave thep int d = U a.e.
1
11} It y<u 1n 0, then A 2 A] ant X = A1 1t and only 1f Y = 8;1 (fur sope
. , 1
6 < 0): 1n particular we have then sup d = U a.e,
1

vroof ot Lemma II.2: We will only prove part 1) since 1) and 11) are totally similar.

tirst show: A 2 X}. Indeed 1r A < 71, from Theorem 11.3 and using the stochastic

representations, 1t 1s easy to conclude: ¢ = 0., Now, 1t A = 71, let 6 be gefined
8 = sup (u > 0, uw1 <Y .
1ty = Gw\, we are done since we have then:
sup(A ¥,) = sup(A ¥ + a'v) > sup(A ¥ ) + Gnf ab)y .
i21 121 121 121
1f ¢y 2 Gwi, we argue as tollows: we first observe that

. - = - - - 1.
Stp(A ¥ + d ¥) - sup(A, 6y ) 'X1 (¥ - 8y) a.e.1n 0

i21 i21

B, Y el (0)

On the other hand there exist uki N

satisfying:
a  (x)E &, > vE[%, vE e R 0
ke (X85 ’ s a.e, 1n (

and such that:

sup(AlW) - sup(A18w1) = ~a .3

- - D - H 2l
<% 9W1) + Bkak(w 9W1) + Y (Y 9W1) a.e. in (
121 121

kl(w

And thils yilelds:

-a .9

2 (V- ew') + Bkakw - ew,) + (Y - X')(v - 6w,> >

> (inf dl)w a.e. 1n O

121

v -0y, €TI0y, v-9y, 20 1 0 .
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And using bony's maximum princlile (8] as in the proot or Lemma 11.1 we rdeduce:
, 2 ) , ,
v - Bv‘ >0 an Y (b - oy, ) <0 on al, and this contradicts the definition ot 9.

This completes the proot of the lemma.
Wwe now turn to the proot ot 1v) in Theorem 11.4 (since the proof of 11i) 1s 1dentical,

we will skip 1t). Let A > X and let us show the existence of we first remark that

1 Y
tor € small enouyh, we have:
Ay ) + A epw‘: =€ 71w1 + A epw“’
< e ¥, a.e. in 0

. L 2,%
€y, €w 0, € W1 =0 on 30 .

un the other hand there exists K large enough such that K 2 slw1l o and K 2 1: thus

L
A(K) + AkP > Ak in 0, k> EW] in 0 .
Then, applying Theorem II.1, the existence of ;& is proved,
Next, let Uy vy be two positive solutions ot (33); we may assume without loss of

generality that uy ‘ VA and we are going to use an argument due to H., Amann and
T. Laestch [3]. let k = sup(u € (0,1), uuA < Vi necessarily k < 1 and we have:

> - .
VA kuA in « Now we have:

Alkuy) + Ak wf = Aku

\ S and thus A(kux) + %PuP € aku

A A A

therefore:
Av, - A(ku,) + lp N A (v, - ku,) 2 0 in O
A A A Py A 4
3
and from Lemma II.1 we deduce: vy - kuA >0 an 0O, Ty (VA - kux) < 0; on 30; which
contradicts the detinition of k. This proves the uniqueness and we conclude.
Remark 11.10: we only used tue tact that f£(t) = At - AtP satisfies (tror A > A

wz'u

Eoc(k)' f(t:)t-1 15 strictly decreasing on R

t € £1(0) > 'X, and lLimf®)ETY < T .

* tre® 2

We now conclude by a result, announced in Remark II.9, showing that the existence of
demi-eigenvalues and of split hifurcation diagrams is mainly a consequence of the Lipschitz
character {(and non-difterentiability) of the nonlinearity arising i1n the operator A. The

example that we give below can be interpreted in terms of optimal stochastic control but we

will not do it here,

-8




et et

we TIrst remark that 1t we take tor "

Ax < =4 s dg
1
where  § 18 ¢ Jdense tamily ot 507 (|£l| = 1), then:
Ag = —8g + |V , weech D) .
Tuus Theorem 11.2 yields 1n pdarticular: xl > A‘
[T S SR N X1 there exists a umgue solution u, € Cz(ﬁ) of
- = » ) = .
AuA + [VuA] 1+ Xux in 0, uy 0 an 0, uy u on 30
— UA 1 3 -
11) As A * X], ToT— converges 1in C (0) (and thus 1n C7(Q) to the unique solution
A =
'] ot: L
-y, o+ |Vw‘| = T1w1 in o, % 20 1n 0, vyt =1, ¥ =0 on 30 .
L

111) Finally, 1t ¢ 6 C2(5) satisties:
-AY + |V =AYy 1n 0, ¥ >0 in U, y=0 on 30

then A = T] and ¢ = 8¢, tor some 8 > 0.

we now consider a somewhat relatea problem, hamely:

(35) -Buy o+ |VuxlB =1+ Au

~ ~ 8 ~
(36) -Auk + ]Vuxl = Au

u, 0 in (0, u, = 0 on 90 ;

AT A

3 g, = T
A Uy 20 n 0, u, = ¢ on 30 ;
where 8 > 1,

Proposition Il.1:

1) For all X > 0, there exists a unique solution uy of (35) and u 15 contlnuous

A

with respect to A (tor example 1n the space CZ(E)).

1) It A« A‘, there 1s no solution ot (30}; while 1f A > A' there exists a unique

~ .
positive solution u of (36) and u 1s continuous with respect to A {for example in

A A

the space Cz(a)).

Proot ot Proposition II.1: sSince this proposition 15 not essential tor our concern here,

we Wiil 1ndicate only the main lines ot 1ts proot. wWe tirst show that it o\ 18 boundea,

1,=

then solutions ot (3%), (3b) are a priori bounded 1n W (0) (And thus in cz(o)): the

existence cdn then be obtulned by the technigques ot P, L. Licns {28). We will thern jr v

~

the unigueness ot uA, uA.

- 19




~

the proot ot the o priorl bounds for iyr Uy are totally similar ana e «1). . %

only rvr u wWe argue as follows: t1rst remdrk that we have:

e
fo IVuA|zdx + fo ]Vu)‘lB ujax € fo ujax + A IO uiux

8 8 \8 t+1/8 8 . é .
but fo |Vux| uyax = (E:TJ fo |Vux / |72 ¢ fo u,dx tor some constant C(= .(8)) >y

and where & = KET (B+1) > 2 and this shows: luxl 1 € C. Therefore u, 1s noundea in
H
. N
LZN/‘ 2) ©) (n L2, p<® it N € 2) and remarxing that we have: -AUA <1+ AUA

n U, ux ? U we then deduce by a straightforward bootstrap arqument:

luAl - CC .
L (M

Using this bound 1t is easy to show that, on a convenient neighborhood of the boundary

Pc = {x & 0, dist(x,90) < €}, we have:

- a8y + 9we) P o e hyy an T

ué > u, on ar

€
for some large enough constant U > 0O and where &(x) = dist(x,90). This implies:
3
Isgll - € C. And using the results of P. L. Lions [28]), one then obtains:
L (30
f .
lux w1"(0) €C

We conclude by giving the proof of the uniqueness of uy (the same argument works for
ux): again we will use the device of Laetsch [27). 1If vyr u, are two solutions and if

in (). Then k < ' and ku, € v

ux £ Vyr we denote by: k = sup(u € (0,1), uux v A

A At

Next, we have:
-A(ku,) + IV(ku )lB Ck{l + Aa,) <1 + Y(ku,) € =4v, + |Vv |B
A A A Y A A
and trom the maximum principle, this yields:
]
kuy < v, 1n 0 ., ¥ (kux - vy} >0 on 30

which contradicts the definition or k.
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